Computing dynamic optimal mechanisms when hidden types are Markov and controlled by hidden actions

Kenichi Fukushima
University of Wisconsin, Madison

Yuichiro Waki
University of Queensland

September 25, 2011

This note documents how the main theoretical results in Fukushima and Waki (2011) extend to a richer setting where the agent can influence the evolution of his hidden type θ_{t} through a hidden action y_{t}. An example of such a setting is one where θ_{t} represents a hidden stock of wealth or human capital and y_{t} is a hidden investment. The notation follows Fukushima and Waki (2011) unless otherwise indicated.

In each period the agent draws a type $\theta_{t} \in \Theta$ and sends a report $r_{t} \in \Theta$ to the planner. The planner chooses an outcome $x_{t} \in X$ and recommends an action $y_{t} \in Y$ given the agent's history of reports. The agent then chooses an action $y_{t}^{\prime} \in Y$ which may or may not equal y_{t}. We assume Y is a finite set with cardinality M.

If the agent's current type is θ_{t} and he chooses action y_{t}, his next period type θ_{t+1} is drawn from the density $\pi\left(\cdot \mid \theta_{t}, y_{t}\right)>0$. The initial distribution is $\pi\left(\cdot \mid \theta_{-1}, y_{-1}\right)$ where $\left(\theta_{-1}, y_{-1}\right)$ is publicly known. We let \mathbf{Y} denote the set of function sequences $\mathbf{y}=\left\{y_{t}\right\}_{t=0}^{\infty}, y_{t}: \Theta^{t+1} \rightarrow Y$ for each t, and write

$$
\operatorname{Pr}\left(\theta^{t} \mid \theta_{-1}, y_{-1}, \mathbf{y}\right)=\pi\left(\theta_{t} \mid \theta_{t-1}, y_{t-1}\left(\theta^{t-1}\right)\right) \times \cdots \times \pi\left(\theta_{1} \mid \theta_{0}, y_{0}\left(\theta^{0}\right)\right) \times \pi\left(\theta_{0} \mid \theta_{-1}, y_{-1}\right) .
$$

We also let $\left.\mathbf{y}\right|_{\theta^{t-1}}=\left\{y_{t+s}\left(\theta^{t-1}, \cdot\right)\right\}_{s=0}^{\infty}$ denote the continuation of \mathbf{y} after θ^{t-1}.
An allocation is then a sequence $(\mathbf{x}, \mathbf{y})=\left\{x_{t}, y_{t}\right\}_{t=0}^{\infty}$, where $x_{t}: \Theta^{t+1} \rightarrow X$ and $y_{t}:$ $\Theta^{t+1} \rightarrow Y$ for each t. We do not introduce randomizations to keep the notation simple, although doing so is quite straightforward and useful for computations (as it helps obtain convexity).

If allocation (\mathbf{x}, \mathbf{y}) takes place, that is, if after each shock history θ^{t} the outcome $x_{t}\left(\theta^{t}\right)$ occurs and the agent chooses $y_{t}\left(\theta^{t}\right)$, the agent obtains lifetime utility:

$$
U\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right)=\sum_{t=0}^{\infty} \sum_{\theta^{t}} \beta^{t} u\left(x_{t}\left(\theta^{t}\right), y_{t}\left(\theta^{t}\right) ; \theta_{t}\right) \operatorname{Pr}\left(\theta^{t} \mid \theta_{-1}, y_{-1}, \mathbf{y}\right)
$$

and the planner incurs cost:

$$
C\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right)=\sum_{t=0}^{\infty} \sum_{\theta^{t}} q^{t} c\left(x_{t}\left(\theta^{t}\right)\right) \operatorname{Pr}\left(\theta^{t} \mid \theta_{-1}, y_{-1}, \mathbf{y}\right)
$$

An allocation (\mathbf{x}, \mathbf{y}) is therefore incentive compatible if

$$
\begin{equation*}
U\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right) \geq U\left(\mathbf{x} \circ \mathbf{r}, \mathbf{y}^{\prime} ; \theta_{-1}, y_{-1}\right), \quad \forall\left(\mathbf{r}, \mathbf{y}^{\prime}\right) \in \mathbf{R} \times \mathbf{Y} \tag{1}
\end{equation*}
$$

and satisfies promise keeping if

$$
\begin{equation*}
U\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right) \geq U_{0} \tag{2}
\end{equation*}
$$

The planning problem starting from $\left(\theta_{-1}, y_{-1}, U_{0}\right)$ is to minimize $C\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right)$ by choice of (\mathbf{x}, \mathbf{y}) subject to incentive compatibility and promise keeping.

We have the following analog of Lemma 1:
Lemma A1. An allocation (\mathbf{x}, \mathbf{y}) is incentive compatible if and only if

$$
\begin{equation*}
u\left(x_{t}\left(\theta^{t}\right), y_{t}\left(\theta^{t}\right) ; \theta_{t}\right)+\beta U_{t+1}\left(\theta^{t} ; \theta_{t}, y_{t}\left(\theta^{t}\right)\right) \geq u\left(x_{t}\left(\theta^{t-1}, \theta_{t}^{\prime}\right), y_{t}^{\prime} ; \theta_{t}\right)+\beta U_{t+1}\left(\theta^{t-1}, \theta_{t}^{\prime} ; \theta_{t}, y_{t}^{\prime}\right) \tag{3}
\end{equation*}
$$

for all $t, \theta^{t-1}, \theta_{t}, \theta_{t}^{\prime}$, and y_{t}^{\prime}, where

$$
U_{t}\left(\theta^{t-1} ; \theta_{-}, y_{-}\right)=\sum_{s=t}^{\infty} \sum_{\theta_{t}^{s}} \beta^{s-t} u\left(x_{s}\left(\theta^{t-1}, \theta_{t}^{s}\right), y_{s}\left(\theta^{t-1}, \theta_{t}^{s}\right) ; \theta_{s}\right) \operatorname{Pr}\left(\theta_{t}^{s}\left|\theta_{-}, y_{-}, \mathbf{y}\right|_{\theta^{t-1}}\right)
$$

Proof. The only if part is clear. So let (\mathbf{x}, \mathbf{y}) satisfy (3) and fix $\left(\mathbf{r}, \mathbf{y}^{\prime}\right) \in \mathbf{R} \times \mathbf{Y}$. For each t, define $\left.\mathbf{r}\right|^{t}$ and $\left.\mathbf{y}^{\prime}\right|^{t}$ by $\left(\left.r\right|_{s} ^{t}\left(\theta^{s}\right),\left.y^{\prime}\right|_{s} ^{t}\left(\theta^{s}\right)\right)=\left(r_{s}\left(\theta^{s}\right), y_{s}^{\prime}\left(\theta^{s}\right)\right)$ for all $s \leq t$ and θ^{s}, and $\left(\left.r\right|_{s} ^{t}\left(\theta^{s}\right),\left.y^{\prime}\right|_{s} ^{t}\left(\theta^{s}\right)\right)=\left(\theta_{s}, y_{s}\left(r^{t}\left(\theta^{t}\right), \theta_{t+1}^{s}\right)\right)$ for all $s \geq t+1$ and θ^{s}. I.e., $\left(\left.\mathbf{r}\right|^{t},\left.\mathbf{y}^{\prime}\right|^{t}\right)$ follows (r, $\left.\mathbf{y}^{\prime}\right)$ until period t and then reverts back to truth-telling and obedience from $t+1$. Applying (3) inductively we have $U\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right) \geq U\left(\left.\mathbf{x} \circ \mathbf{r}\right|^{0},\left.\mathbf{y}^{\prime}\right|^{0} ; \theta_{-1}, y_{-1}\right) \geq U\left(\left.\mathbf{x} \circ \mathbf{r}\right|^{1},\left.\mathbf{y}^{\prime}\right|^{1} ; \theta_{-1}, y_{-1}\right) \geq$ $\cdots \geq U\left(\left.\mathbf{x} \circ \mathbf{r}\right|^{t},\left.\mathbf{y}^{\prime}\right|^{t} ; \theta_{-1}, y_{-1}\right)$ for any t. Since u is bounded and $\beta \in(0,1)$, this implies:

$$
U\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right) \geq \lim _{t \rightarrow \infty} U\left(\left.\mathbf{x} \circ \mathbf{r}\right|^{t},\left.\mathbf{y}^{\prime}\right|^{t} ; \theta_{-1}, y_{-1}\right)=U\left(\mathbf{x} \circ \mathbf{r}, \mathbf{y}^{\prime} ; \theta_{-1}, y_{-1}\right)
$$

Hence (\mathbf{x}, \mathbf{y}) is incentive compatible.
Notice here that the continuation utility profile $U_{t}\left(\theta^{t-1} ; \cdot, \cdot\right)$ is a function of $\left(\theta_{-}, y_{-}\right) \in$ $\Theta \times Y$, so a recursive formulation in the spirit of Fernandes and Phelan (2000) has $N \times M$ continuous state variables.

We say that π has an order K mixture representation if we can write:

$$
\pi\left(\theta \mid \theta_{-}, y_{-}\right)=\sum_{k=1}^{K} p_{k}(\theta) w_{k}\left(\theta_{-}, y_{-}\right)
$$

where $p: \Theta \rightarrow \mathbb{R}_{+}^{K}$ and $w: \Theta \times Y \rightarrow \mathbb{R}_{+}^{K}$ satisfy $\sum_{\theta \in \Theta} p_{k}(\theta)=1$ for each k and $\sum_{k=1}^{K} w_{k}\left(\theta_{-}, y_{-}\right)=1$ for each $\left(\theta_{-}, y_{-}\right)$.

Under this representation, we can define

$$
\begin{align*}
& a_{t}\left(\theta^{t-1}\right)=\sum_{\theta_{t}}\left\{u\left(x_{t}\left(\theta^{t}\right), y_{t}\left(\theta^{t}\right) ; \theta_{t}\right)\right. \\
& \tag{4}\\
& \left.\quad+\beta \sum_{s=t+1}^{\infty} \sum_{\theta_{t+1}^{s}} \beta^{s-t-1} u\left(x_{s}\left(\theta^{s}\right), y_{s}\left(\theta^{s}\right) ; \theta_{s}\right) \operatorname{Pr}\left(\theta_{t+1}^{s}\left|\theta_{t}, y_{t}\left(\theta^{t}\right), \mathbf{y}\right|_{\theta^{t}}\right)\right\} p\left(\theta_{t}\right)
\end{align*}
$$

and write

$$
U_{t}\left(\theta^{t-1} ; \cdot, \cdot\right)=\sum_{k=1}^{K} a_{k t}\left(\theta^{t-1}\right) w_{k}(\cdot, \cdot)
$$

This suggests that, by using a_{t} instead of U_{t} as an endogenous state variable, it should be possible to reduce the dimensionality from $N \times M$ to K.

Let us now write $a_{t}\left(\theta^{t-1} ; \mathbf{x}, \mathbf{y}\right)$ to describe the mapping from (\mathbf{x}, \mathbf{y}) to $a_{t}\left(\theta^{t-1}\right)$ defined by (4). Let us also write $a_{0}(\mathbf{x}, \mathbf{y})=a_{0}\left(\theta^{-1} ; \mathbf{x}, \mathbf{y}\right)$, as this is independent of θ_{-1}. We then define the auxiliary planning problem starting from $\left(\theta_{-1}, y_{-1}, a_{0}\right)$ as the problem of choosing (\mathbf{x}, \mathbf{y}) to minimize $C\left(\mathbf{x}, \mathbf{y} ; \theta_{-1}, y_{-1}\right)$ subject to incentive compatibility (1) and

$$
\begin{equation*}
a_{0}(\mathbf{x}, \mathbf{y})=a_{0} \tag{5}
\end{equation*}
$$

We let $A^{*} \subset V^{K}$ denote the set of a_{0} 's for which the constraint set of this problem is nonempty (which is independent of $\left(\theta_{-1}, y_{-1}\right)$) and let $J^{*}: \Theta \times Y \times A^{*} \rightarrow \mathbb{R}$ denote the optimal value function. If

$$
a_{0}^{*} \in \arg \min _{a_{0} \in A^{*}} J^{*}\left(\theta_{-1}, y_{-1}, a_{0}\right) \quad \text { s.t. } \quad a_{0} \cdot w\left(\theta_{-1}, y_{-1}\right) \geq U_{0}
$$

then a solution to the auxiliary planning problem starting from $\left(\theta_{-1}, y_{-1}, a_{0}^{*}\right)$ is a solution to the planning problem starting from $\left(\theta_{-1}, y_{-1}, U_{0}\right)$.

The analog of Lemma 2 is:
Lemma A2. An allocation (x, y) satisfies the constraints of the auxiliary planning problem (1) and (5) if and only if there exists $\mathbf{a}=\left\{a_{t}\right\}_{t=0}^{\infty}, a_{t}: \Theta^{t} \rightarrow A^{*}$, such that $(\mathbf{x}, \mathbf{y}, \mathbf{a})$ satisfies

$$
\begin{align*}
& u\left(x_{t}\left(\theta^{t}\right), y_{t}\left(\theta^{t}\right) ; \theta_{t}\right)+ \beta a_{t+1}\left(\theta^{t}\right) \cdot w\left(\theta_{t},\right. \\
&\left.y_{t}\left(\theta^{t}\right)\right) \tag{6}\\
& \geq u\left(x_{t}\left(\theta^{t-1}, \theta_{t}^{\prime}\right), y_{t}^{\prime} ; \theta_{t}\right)+\beta a_{t+1}\left(\theta^{t-1}, \theta_{t}^{\prime}\right) \cdot w\left(\theta_{t}, y_{t}^{\prime}\right) \tag{7}\\
& a_{t}\left(\theta^{t-1}\right)=\sum_{\theta_{t}}\left\{u\left(x_{t}\left(\theta^{t}\right), y_{t}\left(\theta^{t}\right) ; \theta_{t}\right)+\beta a_{t+1}\left(\theta^{t}\right) \cdot w\left(\theta_{t}, y_{t}\left(\theta^{t}\right)\right)\right\} p\left(\theta_{t}\right)
\end{align*}
$$

for all $t, \theta^{t}, \theta_{t}^{\prime}, y_{t}^{\prime}$, and $a_{0}\left(\theta^{-1}\right)=a_{0}$.
Proof. Virtually identical to that of Lemma 2.
The analog of the B operator therefore maps $A \subset V^{K}$ into

$$
B(A)=\left\{a \in V^{K} \mid \exists\left(x, y, a^{+}\right) \in F(a ; A)\right\}
$$

where $F(a ; A)$ is the set of function triples $\left(x, y, a^{+}\right): \Theta \rightarrow X \times Y \times A$ satisfying:

$$
\begin{gathered}
u(x(\theta), y(\theta) ; \theta)+\beta a^{+}(\theta) \cdot w(\theta, y(\theta)) \geq u\left(x\left(\theta^{\prime}\right), y^{\prime} ; \theta\right)+\beta a^{+}\left(\theta^{\prime}\right) \cdot w\left(\theta, y^{\prime}\right), \quad \forall \theta, \theta^{\prime}, y^{\prime} \\
a=\sum_{\theta}\left\{u(x(\theta), y(\theta) ; \theta)+\beta a^{+}(\theta) \cdot w(\theta, y(\theta))\right\} p(\theta) .
\end{gathered}
$$

At this point it is useful to construct a particular incentive compatible allocation ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) as follows. First pick any $\bar{x} \in X$ and let $W: \Theta \rightarrow \mathbb{R}$ solve the Bellman equation:

$$
W(\theta)=\max _{y \in Y}\left\{u(\bar{x}, y ; \theta)+\beta \sum_{\theta_{+}} W\left(\theta_{+}\right) \pi\left(\theta_{+} \mid \theta, y\right)\right\} .
$$

For each θ let $\bar{y}(\theta)$ solve the right hand side problem. Then set $\bar{x}_{t}\left(\theta^{t}\right)=\bar{x}$ and $\bar{y}_{t}\left(\theta^{t}\right)=\bar{y}\left(\theta_{t}\right)$ for each t and θ^{t}. We then have for any t and θ^{t-1} :

$$
U_{t}\left(\theta^{t-1} ; \theta_{-}, y_{-}\right)=\sum_{s=t}^{\infty} \sum_{\theta_{t}^{s}} \beta^{s-t} u\left(\bar{x}, \bar{y}\left(\theta_{s}\right) ; \theta_{s}\right) \operatorname{Pr}\left(\theta_{t}^{s}\left|\theta_{-}, y_{-}, \mathbf{y}\right|_{\theta^{t-1}}\right)=\sum_{\theta} W(\theta) \pi\left(\theta \mid \theta_{-}, y_{-}\right)
$$

So for each $t, \theta^{t-1}, \theta_{t}, \theta_{t}^{\prime}, y_{t}^{\prime}$:

$$
u\left(\bar{x}, \bar{y}\left(\theta_{t}\right) ; \theta_{t}\right)+\beta U_{t+1}\left(\theta^{t} ; \theta_{t}, \bar{y}\left(\theta_{t}\right)\right) \geq u\left(\bar{x}, y_{t}^{\prime} ; \theta_{t}\right)+\beta U_{t+1}\left(\theta^{t-1}, \theta_{t}^{\prime} ; \theta_{t}, y_{t}^{\prime}\right) .
$$

It follows from Lemma A1 that ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$) is incentive compatible.
We have the following analog of Proposition 3:
Proposition A3. A^{*} is a non-empty and compact set, and is the largest fixed point of B. If $A_{0} \subset V^{K}$ is a compact set satisfying $A_{0} \supset B\left(A_{0}\right) \supset A^{*}$ (one example being $A_{0}=V^{K}$) then $B^{n}\left(A_{0}\right)$ is decreasing in n and $\cap_{n=0}^{\infty} B^{n}\left(A_{0}\right)=A^{*}$. If $A_{0} \subset V^{K}$ satisfies $A^{*} \supset B\left(A_{0}\right) \supset A_{0}$ (one example being $A_{0}=\left\{a_{0}(\overline{\mathbf{x}}, \overline{\mathbf{y}})\right\}$), then $B^{n}\left(A_{0}\right)$ is increasing in n and $\operatorname{cl}\left(\cup_{n=0}^{\infty} B^{n}\left(A_{0}\right)\right)=$ A^{*}.

Proof. The analogs of Lemmas 5-8 follow from virtually identical arguments. Thus: (i) $A \subset V^{K}, A \subset B(A) \Longrightarrow B(A) \subset A^{*}$, (ii) $B\left(A^{*}\right)=A^{*}$, (iii) $A \subset A^{\prime} \subset V^{K} \Longrightarrow$ $B(A) \subset B\left(A^{\prime}\right)$, and (iv) A is compact $\Longrightarrow B(A)$ is compact. Similarly for the first two parts of the proposition.

To prove the final part of the proposition, suppose $A_{0} \subset B\left(A_{0}\right) \subset A^{*}$. Then from (ii), (iii), and the compactness of A^{*}, we know that $B^{n}\left(A_{0}\right)$ is increasing and $\operatorname{cl}\left(\cup_{n=0}^{\infty} B^{n}\left(A_{0}\right)\right) \subset A^{*}$. To prove $A^{*} \subset \operatorname{cl}\left(\cup_{n=0}^{\infty} B^{n}\left(A_{0}\right)\right)$, pick any $a \in A^{*}$. We construct a sequence in $\cup_{n=0}^{\infty} B^{n}\left(A_{0}\right)$ that converges to a. For this, first pick another $a^{\prime} \in A_{0}\left(\subset A^{*}\right)$. By the definition of A^{*} there exist incentive compatible allocations (\mathbf{x}, \mathbf{y}) and ($\mathbf{x}^{\prime}, \mathbf{y}^{\prime}$) such that $a=a_{0}(\mathbf{x}, \mathbf{y})$ and $a^{\prime}=a_{0}\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$. Next for each $n \geq 1$, do the following. Define $\mathbf{x}^{n}=\left\{x_{t}^{n}\right\}_{t=0}^{\infty}$ by truncating \mathbf{x} after n periods and appending \mathbf{x}^{\prime}. Thus for $t>n$:

$$
\left(x_{0}^{n}\left(\theta^{0}\right), \ldots, x_{t}^{n}\left(\theta^{t}\right)\right)=\left(x_{0}\left(\theta^{0}\right), \ldots, x_{n}\left(\theta^{n}\right), x_{0}^{\prime}\left(\theta_{n+1}^{n+1}\right), \ldots, x_{t-n-1}^{\prime}\left(\theta_{n+1}^{t}\right)\right)
$$

And let

$$
\left(\mathbf{r}^{n}, \mathbf{y}^{n}\right) \in \arg \max _{(\check{\mathbf{r}, \check{\mathbf{y}}) \in \mathbf{R} \times \mathbf{Y}}} U\left(\mathbf{x}^{n} \circ \check{\mathbf{r}}, \check{\mathbf{y}}\right) .
$$

Here, since $\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)$ is incentive compatible, we can assume without loss that for $t>n$, $r_{t}^{n}\left(\theta^{t}\right)=\theta_{t}$ and $y_{t}^{n}\left(\theta^{t}\right)=y_{t-n-1}^{\prime}\left(\theta_{n+1}^{t}\right)$. Finally, let $\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right)=\left(\mathbf{x}^{n} \circ \mathbf{r}^{n}, \mathbf{y}^{n}\right)$. By construction, $\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right)$ is incentive compatible, $a_{0}\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right) \geq a_{0}\left(\mathbf{x}^{n}, \mathbf{y}\right)$, and $a_{n+1}\left(\theta^{n} ; \hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right)=a^{\prime}$ for all θ^{n}.

We next show $a_{0}\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right) \in \cup_{n=0}^{\infty} B^{n}\left(A_{0}\right)$ for all n. From the incentive compatibility of $\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right)$ and $a_{n+1}\left(\theta^{n} ; \hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right)=a^{\prime}$ we obtain by induction $a_{0}\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right) \in B^{n+1}\left(\left\{a^{\prime}\right\}\right)$. This, (iii), and the fact that $B^{n}\left(A_{0}\right)$ is increasing in n then imply the result.

To verify $a_{0}\left(\hat{\mathbf{x}}^{n}, \hat{\mathbf{y}}^{n}\right) \rightarrow a$ as $n \rightarrow \infty$, we pick an arbitrary subsequence $\left\{a_{0}\left(\hat{\mathbf{x}}^{n^{\prime}}, \hat{\mathbf{y}}^{n^{\prime}}\right)\right\}_{n^{\prime}=1}^{\infty}$ and show that it has a further subsequence $\left\{a_{0}\left(\hat{\mathbf{x}}^{n^{\prime \prime}}, \hat{\mathbf{y}}^{n^{\prime \prime}}\right)\right\}_{n^{\prime \prime}=1}^{\infty}$ that converges to a. Applying to $\left(\mathbf{r}^{n}, \mathbf{y}^{n}\right)$ the argument we applied to \mathbf{r}^{n} in the proof of Proposition 3, we obtain a subindex $n^{\prime \prime}$ along which $\left(\mathbf{r}^{n^{\prime \prime}}, \mathbf{y}^{n^{\prime \prime}}\right)$ converges to some ($\left.\tilde{\mathbf{r}}, \tilde{\mathbf{y}}\right)$. Also for each t we have $x_{t}^{n^{\prime \prime}}=x_{t}$ for $n^{\prime \prime} \geq t$. This together with the boundedness of u implies $a_{0}\left(\hat{\mathbf{x}}^{n^{\prime \prime}}, \hat{\mathbf{y}}^{n^{\prime \prime}}\right)=a_{0}\left(\mathbf{x}^{n^{\prime \prime}} \circ \mathbf{r}^{n^{\prime \prime}}, \mathbf{y}^{n^{\prime \prime}}\right) \rightarrow$ $a_{0}(\mathbf{x} \circ \tilde{\mathbf{r}}, \tilde{\mathbf{y}})$. Combining this with $a_{0}\left(\hat{\mathbf{x}}^{n^{\prime \prime}}, \hat{\mathbf{y}}^{n^{\prime \prime}}\right) \geq a_{0}\left(\mathbf{x}^{n}, \mathbf{y}\right)$ and $a_{0}\left(\mathbf{x}^{n}, \mathbf{y}\right) \rightarrow a$, we obtain $a_{0}(\mathbf{x} \circ \tilde{\mathbf{r}}, \tilde{\mathbf{y}}) \geq a$. But the incentive compatibility of (\mathbf{x}, \mathbf{y}) implies $a_{0}(\mathbf{x} \circ \tilde{\mathbf{r}}, \tilde{\mathbf{y}}) \leq a_{0}(\mathbf{x}, \mathbf{y})=a$, so $a_{0}(\mathbf{x} \circ \tilde{\mathbf{r}}, \tilde{\mathbf{y}})=a$.

Now let $A_{0}=\left\{a_{0}(\overline{\mathbf{x}}, \overline{\mathbf{y}})\right\}$. From the incentive compatibility of ($\overline{\mathbf{x}}, \overline{\mathbf{y}}$), (ii), and (iii), we have $B\left(A_{0}\right) \subset A^{*}$. To see $A_{0} \subset B\left(A_{0}\right)$, observe that if we set $\left(x(\theta), y(\theta), a^{+}(\theta)\right)=$ $\left(\bar{x}, \bar{y}(\theta), a_{0}(\overline{\mathbf{x}}, \overline{\mathbf{y}})\right)$ for each θ we have $\left(x, y, a^{+}\right) \in F\left(a_{0}(\overline{\mathbf{x}}, \overline{\mathbf{y}}) ; A_{0}\right)$.

The analog of the T operator maps $J: \Theta \times Y \times A^{*} \rightarrow \mathbb{R}$ into $T J: \Theta \times Y \times A^{*} \rightarrow \mathbb{R}$, defined as:

$$
\begin{equation*}
T J\left(\theta_{-}, y_{-}, a\right)=\inf _{\left(x, y, a^{+}\right) \in F\left(a ; A^{*}\right)} \sum_{\theta}\left\{c(x(\theta))+q J\left(\theta, y(\theta), a^{+}(\theta)\right)\right\} \pi\left(\theta \mid \theta_{-}, y_{-}\right) \tag{8}
\end{equation*}
$$

The analog of Proposition 4 is therefore:
Proposition A4. J^{*} is a bounded lower semicontinuous function, and $\left\|T^{n} J-J^{*}\right\| \rightarrow 0$ as $n \rightarrow \infty$ for any bounded $J: \Theta \times Y \times A^{*} \rightarrow \mathbb{R}$. There exists a function $g^{*}: \Theta \times Y \times A^{*} \rightarrow$ $\left(X \times Y \times A^{*}\right)^{\Theta}$ which attains the infimum on the right hand side of (8) when $J=J^{*}$, and for any such g^{*} the allocation $\left(\mathbf{x}^{*}, \mathbf{y}^{*}\right)$ defined recursively by $\left(x_{t}^{*}\left(\theta^{t}\right), y_{t}^{*}\left(\theta^{t}\right), a_{t+1}^{*}\left(\theta^{t}\right)\right)=$ $g^{*}\left(\theta_{t-1}, y_{t-1}^{*}\left(\theta^{t-1}\right), a_{t}^{*}\left(\theta^{t-1}\right)\right)\left(\theta_{t}\right)$ solves the auxiliary planning problem starting from $\left(\theta_{-1}, y_{-1}\right.$, $\left.a_{0}^{*}\left(\theta^{-1}\right)\right)$.

Proof. Virtually identical to that of Proposition 4.

References

Fernandes, A., and C. Phelan (2000): "A Recursive Formulation for Repeated Agency with History Dependence," Journal of Economic Theory, 91(2), 223-247.

Fukushima, K., and Y. Waki (2011): "Computing Dynamic Optimal Mechanisms When Hidden Types Are Markov," Working paper.

