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This note documents how the main theoretical results in Fukushima and Waki (2011)
extend to a richer setting where the agent can in�uence the evolution of his hidden type
θt through a hidden action yt. An example of such a setting is one where θt represents a
hidden stock of wealth or human capital and yt is a hidden investment. The notation follows
Fukushima and Waki (2011) unless otherwise indicated.

In each period the agent draws a type θt ∈ Θ and sends a report rt ∈ Θ to the planner.
The planner chooses an outcome xt ∈ X and recommends an action yt ∈ Y given the agent's
history of reports. The agent then chooses an action y′t ∈ Y which may or may not equal yt.
We assume Y is a �nite set with cardinality M .

If the agent's current type is θt and he chooses action yt, his next period type θt+1 is drawn
from the density π(·|θt, yt) > 0. The initial distribution is π(·|θ−1, y−1) where (θ−1, y−1) is
publicly known. We let Y denote the set of function sequences y = {yt}∞t=0, yt : Θt+1 → Y
for each t, and write

Pr(θt|θ−1, y−1,y) = π(θt|θt−1, yt−1(θt−1))× · · · × π(θ1|θ0, y0(θ0))× π(θ0|θ−1, y−1).

We also let y|θt−1 = {yt+s(θt−1, ·)}∞s=0 denote the continuation of y after θt−1.
An allocation is then a sequence (x,y) = {xt, yt}∞t=0, where xt : Θt+1 → X and yt :

Θt+1 → Y for each t. We do not introduce randomizations to keep the notation simple,
although doing so is quite straightforward and useful for computations (as it helps obtain
convexity).

If allocation (x,y) takes place, that is, if after each shock history θt the outcome xt(θ
t)

occurs and the agent chooses yt(θ
t), the agent obtains lifetime utility:

U(x,y; θ−1, y−1) =
∞∑
t=0

∑
θt

βtu(xt(θ
t), yt(θ

t); θt)Pr(θ
t|θ−1, y−1,y)

and the planner incurs cost:

C(x,y; θ−1, y−1) =
∞∑
t=0

∑
θt

qtc(xt(θ
t))Pr(θt|θ−1, y−1,y).
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An allocation (x,y) is therefore incentive compatible if

U(x,y; θ−1, y−1) ≥ U(x ◦ r,y′; θ−1, y−1), ∀(r,y′) ∈ R×Y (1)

and satis�es promise keeping if

U(x,y; θ−1, y−1) ≥ U0. (2)

The planning problem starting from (θ−1, y−1, U0) is to minimize C(x,y; θ−1, y−1) by choice
of (x,y) subject to incentive compatibility and promise keeping.

We have the following analog of Lemma 1:

Lemma A1. An allocation (x,y) is incentive compatible if and only if

u(xt(θ
t), yt(θ

t); θt) + βUt+1(θt; θt, yt(θ
t)) ≥ u(xt(θ

t−1, θ′t), y
′
t; θt) + βUt+1(θt−1, θ′t; θt, y

′
t) (3)

for all t, θt−1, θt, θ
′
t, and y

′
t, where

Ut(θ
t−1; θ−, y−) =

∞∑
s=t

∑
θst

βs−tu(xs(θ
t−1, θst ), ys(θ

t−1, θst ); θs) Pr(θst |θ−, y−,y|θt−1).

Proof. The only if part is clear. So let (x,y) satisfy (3) and �x (r,y′) ∈ R × Y. For
each t, de�ne r|t and y′|t by (r|ts(θs), y′|ts(θs)) = (rs(θ

s), y′s(θ
s)) for all s ≤ t and θs, and

(r|ts(θs), y′|ts(θs)) = (θs,ys(r
t(θt), θst+1)) for all s ≥ t + 1 and θs. I.e., (r|t,y′|t) follows (r,y′)

until period t and then reverts back to truth-telling and obedience from t+ 1. Applying (3)
inductively we have U(x,y; θ−1, y−1) ≥ U(x ◦ r|0,y′|0; θ−1, y−1) ≥ U(x ◦ r|1,y′|1; θ−1, y−1) ≥
· · · ≥ U(x ◦ r|t,y′|t; θ−1, y−1) for any t. Since u is bounded and β ∈ (0, 1), this implies:

U(x,y; θ−1, y−1) ≥ lim
t→∞

U(x ◦ r|t,y′|t; θ−1, y−1) = U(x ◦ r,y′; θ−1, y−1).

Hence (x,y) is incentive compatible.

Notice here that the continuation utility pro�le Ut(θ
t−1; ·, ·) is a function of (θ−, y−) ∈

Θ× Y , so a recursive formulation in the spirit of Fernandes and Phelan (2000) has N ×M
continuous state variables.

We say that π has an order K mixture representation if we can write:

π(θ|θ−, y−) =
K∑
k=1

pk(θ)wk(θ−, y−),

where p : Θ → RK
+ and w : Θ × Y → RK

+ satisfy
∑

θ∈Θ pk(θ) = 1 for each k and∑K
k=1wk(θ−, y−) = 1 for each (θ−, y−).
Under this representation, we can de�ne

at(θ
t−1) =

∑
θt

{
u(xt(θ

t), yt(θ
t); θt)

+β
∞∑

s=t+1

∑
θst+1

βs−t−1u(xs(θ
s), ys(θ

s); θs) Pr(θst+1|θt, yt(θt),y|θt)

 p(θt) (4)
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and write

Ut(θ
t−1; ·, ·) =

K∑
k=1

akt(θ
t−1)wk(·, ·).

This suggests that, by using at instead of Ut as an endogenous state variable, it should be
possible to reduce the dimensionality from N ×M to K.

Let us now write at(θ
t−1;x,y) to describe the mapping from (x,y) to at(θ

t−1) de�ned by
(4). Let us also write a0(x,y) = a0(θ−1;x,y), as this is independent of θ−1. We then de�ne
the auxiliary planning problem starting from (θ−1, y−1, a0) as the problem of choosing (x,y)
to minimize C(x,y; θ−1, y−1) subject to incentive compatibility (1) and

a0(x,y) = a0. (5)

We let A∗ ⊂ V K denote the set of a0's for which the constraint set of this problem is non-
empty (which is independent of (θ−1, y−1)) and let J∗ : Θ× Y ×A∗ → R denote the optimal
value function. If

a∗0 ∈ arg min
a0∈A∗

J∗(θ−1, y−1, a0) s.t. a0 · w(θ−1, y−1) ≥ U0,

then a solution to the auxiliary planning problem starting from (θ−1, y−1, a
∗
0) is a solution to

the planning problem starting from (θ−1, y−1, U0).
The analog of Lemma 2 is:

Lemma A2. An allocation (x,y) satis�es the constraints of the auxiliary planning problem
(1) and (5) if and only if there exists a = {at}∞t=0, at : Θt → A∗, such that (x,y, a) satis�es

u(xt(θ
t), yt(θ

t); θt) + βat+1(θt) · w(θt, yt(θ
t))

≥ u(xt(θ
t−1, θ′t), y

′
t; θt) + βat+1(θt−1, θ′t) · w(θt, y

′
t) (6)

at(θ
t−1) =

∑
θt

{
u(xt(θ

t), yt(θ
t); θt) + βat+1(θt) · w(θt, yt(θ

t))
}
p(θt) (7)

for all t, θt, θ′t, y
′
t, and a0(θ−1) = a0.

Proof. Virtually identical to that of Lemma 2.

The analog of the B operator therefore maps A ⊂ V K into

B(A) = {a ∈ V K |∃(x, y, a+) ∈ F (a;A)}

where F (a;A) is the set of function triples (x, y, a+) : Θ→ X × Y × A satisfying:

u(x(θ), y(θ); θ) + βa+(θ) · w(θ, y(θ)) ≥ u(x(θ′), y′; θ) + βa+(θ′) · w(θ, y′), ∀θ, θ′, y′

a =
∑
θ

{
u(x(θ), y(θ); θ) + βa+(θ) · w(θ, y(θ))

}
p(θ).
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At this point it is useful to construct a particular incentive compatible allocation (x̄, ȳ)
as follows. First pick any x̄ ∈ X and let W : Θ→ R solve the Bellman equation:

W (θ) = max
y∈Y

u(x̄, y; θ) + β
∑
θ+

W (θ+)π(θ+|θ, y)

 .

For each θ let ȳ(θ) solve the right hand side problem. Then set x̄t(θ
t) = x̄ and ȳt(θ

t) = ȳ(θt)
for each t and θt. We then have for any t and θt−1:

Ut(θ
t−1; θ−, y−) =

∞∑
s=t

∑
θst

βs−tu(x̄, ȳ(θs); θs)Pr(θ
s
t |θ−, y−,y|θt−1) =

∑
θ

W (θ)π(θ|θ−, y−).

So for each t, θt−1, θt, θ
′
t, y
′
t:

u(x̄, ȳ(θt); θt) + βUt+1(θt; θt, ȳ(θt)) ≥ u(x̄, y′t; θt) + βUt+1(θt−1, θ′t; θt, y
′
t).

It follows from Lemma A1 that (x̄, ȳ) is incentive compatible.
We have the following analog of Proposition 3:

Proposition A3. A∗ is a non-empty and compact set, and is the largest �xed point of B. If
A0 ⊂ V K is a compact set satisfying A0 ⊃ B(A0) ⊃ A∗ (one example being A0 = V K) then
Bn(A0) is decreasing in n and ∩∞n=0B

n(A0) = A∗. If A0 ⊂ V K satis�es A∗ ⊃ B(A0) ⊃ A0

(one example being A0 = {a0(x̄, ȳ)}), then Bn(A0) is increasing in n and cl(∪∞n=0B
n(A0)) =

A∗.

Proof. The analogs of Lemmas 5-8 follow from virtually identical arguments. Thus: (i)
A ⊂ V K , A ⊂ B(A) =⇒ B(A) ⊂ A∗, (ii) B(A∗) = A∗, (iii) A ⊂ A′ ⊂ V K =⇒
B(A) ⊂ B(A′), and (iv) A is compact =⇒ B(A) is compact. Similarly for the �rst two
parts of the proposition.

To prove the �nal part of the proposition, suppose A0 ⊂ B(A0) ⊂ A∗. Then from (ii), (iii),
and the compactness of A∗, we know that Bn(A0) is increasing and cl(∪∞n=0B

n(A0)) ⊂ A∗.
To prove A∗ ⊂ cl(∪∞n=0B

n(A0)), pick any a ∈ A∗. We construct a sequence in ∪∞n=0B
n(A0)

that converges to a. For this, �rst pick another a′ ∈ A0(⊂ A∗). By the de�nition of A∗

there exist incentive compatible allocations (x,y) and (x′,y′) such that a = a0(x,y) and
a′ = a0(x′,y′). Next for each n ≥ 1, do the following. De�ne xn = {xnt }∞t=0 by truncating x
after n periods and appending x′. Thus for t > n:

(xn0 (θ0), ..., xnt (θt)) = (x0(θ0), ..., xn(θn), x′0(θn+1
n+1), ..., x′t−n−1(θtn+1)).

And let
(rn,yn) ∈ arg max

(ř,y̌)∈R×Y
U(xn ◦ ř, y̌).

Here, since (x′,y′) is incentive compatible, we can assume without loss that for t > n,
rnt (θt) = θt and y

n
t (θt) = y′t−n−1(θtn+1). Finally, let (x̂n, ŷn) = (xn ◦ rn,yn). By construction,

(x̂n, ŷn) is incentive compatible, a0(x̂n, ŷn) ≥ a0(xn,y), and an+1(θn; x̂n, ŷn) = a′ for all θn.
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We next show a0(x̂n, ŷn) ∈ ∪∞n=0B
n(A0) for all n. From the incentive compatibility of

(x̂n, ŷn) and an+1(θn; x̂n, ŷn) = a′ we obtain by induction a0(x̂n, ŷn) ∈ Bn+1({a′}). This,
(iii), and the fact that Bn(A0) is increasing in n then imply the result.

To verify a0(x̂n, ŷn)→ a as n→∞, we pick an arbitrary subsequence {a0(x̂n
′
, ŷn

′
)}∞n′=1

and show that it has a further subsequence {a0(x̂n
′′
, ŷn

′′
)}∞n′′=1 that converges to a. Applying

to (rn,yn) the argument we applied to rn in the proof of Proposition 3, we obtain a subindex
n′′ along which (rn

′′
,yn

′′
) converges to some (r̃, ỹ). Also for each t we have xn

′′
t = xt for

n′′ ≥ t. This together with the boundedness of u implies a0(x̂n
′′
, ŷn

′′
) = a0(xn

′′ ◦ rn′′ ,yn′′)→
a0(x ◦ r̃, ỹ). Combining this with a0(x̂n

′′
, ŷn

′′
) ≥ a0(xn,y) and a0(xn,y) → a, we obtain

a0(x ◦ r̃, ỹ) ≥ a. But the incentive compatibility of (x,y) implies a0(x ◦ r̃, ỹ) ≤ a0(x,y) = a,
so a0(x ◦ r̃, ỹ) = a.

Now let A0 = {a0(x̄, ȳ)}. From the incentive compatibility of (x̄, ȳ), (ii), and (iii),
we have B(A0) ⊂ A∗. To see A0 ⊂ B(A0), observe that if we set (x(θ), y(θ), a+(θ)) =
(x̄, ȳ(θ), a0(x̄, ȳ)) for each θ we have (x, y, a+) ∈ F (a0(x̄, ȳ);A0).

The analog of the T operator maps J : Θ × Y × A∗ → R into TJ : Θ × Y × A∗ → R,
de�ned as:

TJ(θ−, y−, a) = inf
(x,y,a+)∈F (a;A∗)

∑
θ

{
c(x(θ)) + qJ(θ, y(θ), a+(θ))

}
π(θ|θ−, y−). (8)

The analog of Proposition 4 is therefore:

Proposition A4. J∗ is a bounded lower semicontinuous function, and ||T nJ − J∗|| → 0 as
n → ∞ for any bounded J : Θ × Y × A∗ → R. There exists a function g∗ : Θ × Y × A∗ →
(X × Y × A∗)Θ which attains the in�mum on the right hand side of (8) when J = J∗,
and for any such g∗ the allocation (x∗,y∗) de�ned recursively by (x∗t (θ

t), y∗t (θ
t), a∗t+1(θt)) =

g∗(θt−1, y
∗
t−1(θt−1), a∗t (θ

t−1))(θt) solves the auxiliary planning problem starting from (θ−1, y−1,
a∗0(θ−1)).

Proof. Virtually identical to that of Proposition 4.
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